
NISTIR 5736

Comparison of POSIX
Open System Environment (OSE)
and
Open Distributed Processing (ODP)
Reference Models

Geraldina Fernandes
Joseph Hungate

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Distributed Systems Engineering

Gaithersburg, MD 20899

NIST





Computer Systems Laboratory

National Institute of Standards and Technology

Technology Administration

U.S. Department of Commerce
Gaithersburg, MD 20899

Comparison of

POSIX Open System Environment (OSE)
and

Open Distributed Processing (ODP)

Reference Models

Geraldina Fernandes

Joseph Hungate

Distributed Systems Engineering

November 13, 1995

NIST
National Institute of Standards and Technology

Computer Systems Laboratory





Table of Contents

1 Introduction 1

2 Open Distributed Processing (ODP) Overview 2

2.1 The Reference Model ofODP 2

2.2 Distribution Transparency 3

2.3 Viewpoints 3

2.4 ODP Modeling concepts 4

2.5 ODP Architecture 5

2.5.1 Computational language 6

2.5.2 Engineering language 7

2.6 Management Functions 9

2.7 Management ofODP Systems 10

3 POSIX Open System Environment (OSE) Overview 12

3.1 OSE Reference Model 12

3.2 OSE Services 14

3.3 OSE Cross-category Services 15

3.3.1 OSE Internationalization Services 15

3.3.2 OSE Security Services 15

3.3.3 OSE System Management Services 16

4 ODP-OSE Relationships 18

4.1 Distributed Systems Management 20

5 References 22





1 Introduction

Advances in technology, giving increasing importance to information service networks, and

personal workstations are two factors which permit the construction of distributed applications

running on a large set of interconnected systems. With the increasing need to interconnect

information processing systems, distributed systems are becoming very important. Organizations

need to exchange information, both inside the organization and between cooperating

organizations.

Many organizations are becoming dependent on distributed computing systems. When a

distributed processing system stops providing the service required by its users, an entire factory's

production may stop, a bank cannot conduct its normal transactions or an airline cannot make

reservations. Management of these heterogeneous software and hardware environments, in order

to supply and maintain the services required, is one ofthe most difficult problems facing

computer users today.

Management services provide mechanisms to monitor and control the operation of individual

applications, databases, systems, platforms, networks, and user interactions with these

components. They also enable users and systems to become more efficient in performing

required work. Standards for management services and an integrated approach to assure

consistency are just now being addressed by standards development organizations and user

consortia.

This report presents two existing reference models for describing distributed systems. These

models are the Open Distributed Processing reference model and the POSIX OSE reference

model. They both address distributed open systems, but from different perspectives, with

different objectives and methodology. However, there are some similarities between these two

models and the problems they try to solve may be considered complementary.

After a brief description of the two models, a comparison is made referring in particular to

the extent distributed systems management is accommodated in both models.

1



2 Open Distributed Processing (ODP) Overview

The objective ofODP standardization is to develop standards that allow the distribution of

information processing services in an environment of heterogeneous information technology

resources and multiple organizational domains 1
.

ODP standardization aims to build distributed systems which include the following

properties:

• Openness: This property is achieved through both the contribution of portability (the

ability to execute different system components on different processing nodes without

modification) and interworking (the ability to support meaningful interactions between

components, possibly residing in different systems).

• Integration: This property allows incorporation of various systems and resources (e.g.

systems with different architectures, or different resources with different performance)

into a single system. This helps to deal with heterogeneity.

• Flexibility: This property consists of supporting a system's evolution. A system should

be capable of facing run-time changes and be, for instance, capable of being dynamically

reconfigured to accommodate those changes.

• Transparency: This is a central requirement to facilitate distributed applications

construction, hiding the distribution details from the developers.

2.1 The Reference Model of ODP

The Reference Model ofODP (RM-ODP) provides a framework for the standardization of

Open Distributed Processing. It creates an architecture within which support for distribution,

interworking and portability can be integrated.

The purpose ofthe RM-ODP framework is to organize services within autonomous systems

in order to facilitate interworking of software components distributed into progressively larger

and larger systems.

The RM-ODP is organized into two main parts:

• A descriptive model, found in volume 2 ofthe standard, of distributed systems. It takes

an object-based modeling approach that provides a common ground for all the ODP
viewpoint specifications.

• A prescriptive model, found in volume 3 of the standard, that describes the organization

2



and structure of an open distributed system. It is organized around the ODP five

viewpoints.

2.2 Distribution Transparency

Distribution transparencies are used to hide aspects ofODP systems that arise through their

distribution. The ODP infrastructure supports a set of distribution transparencies:

• Access transparency: Masks differences in data representation and invocation

mechanisms.

• Failure transparency: Masks, from an object, the failure and possible recovery of other

objects (or itself), to enable fault tolerance.

• Location transparency: Masks the use of information about location in space.

• Migration transparency: Masks, from an object, the ability of a system to change the

location of that object. Migration is often used to achieve load balancing and reduce

latency.

• Relocation transparency: Masks relocation of an interface from other interfaces.

• Replication transparency: Masks the use of a group of objects with compatible behaviors

to support an interface. Replication is often used to enhance performance and

availability.

• Persistence transparency: Masks, from an object, the deactivation and reactivation of

other objects (or itself).

• Transaction transparency: Masks coordination of activities amongst a configuration of

objects to achieve consistency.

Distribution transparency is selective. Application designers do not need to be aware of those

aspects of distribution. When addressing the distribution of their applications, they only have to

express their requirements for transparencies.

2.3 Viewpoints

The complete specification of a distributed system usually involves a very large amount of

information, making it difficult to capture all aspects of the design in a single description. The

RM-ODP describes five viewpoints from which an ODP system can be described. Each

3



viewpoint reflects a different set of requirements and concerns which arise in the specification of

an ODP system. These viewpoints are not independent. Each one is a partial view of the

complete system specification. Some items can therefore occur in more than one viewpoint.

The five viewpoints defined in the RM-ODP are:

• Enterprise viewpoint: Is concerned with the business activities of the specified system. It

focuses on the purpose, the scope and the policies for the system.

• Information viewpoint: Is concerned with the information that needs to be stored and

processed in the system. It focuses on the semantics of information and of information

processing.

• Computational viewpoint: Is concerned with the description of the system as a set of

objects which interact at interfaces, without considering the details ofhow they interact.

• Engineering viewpoint: Is concerned with the mechanisms and functions required to

support distributed interaction between objects in the system.

• Technology viewpoint: Is concerned with the detail ofthe components from which the

distributed system is constructed. It focuses on the choice oftechnology in that system.

The RM-ODP defines a viewpoint language for each viewpoint. Each viewpoint language

defines concepts and rules for specifying ODP systems from the corresponding viewpoint. A set

of specifications of an ODP system written in different viewpoint languages should be mutually

consistent, (i.e., should not make mutually contradictory statements)
2

.

2.4 ODP Modeling concepts

Objects and actions are the most basic ODP modeling concepts. All things of interest are

modeled as objects and anything of interest that can happen is an action.

Objects are entities that contain information and offer services. An object is characterized by

its identity and by encapsulation, abstraction and behavior.

The fact that information contained in an object is accessible only through interactions at the

interfaces the object supports is termed encapsulation. The object's internal operation is not

visible at the object boundary, unless its attributes, operations, or notifications are defined to

expose that information.

Abstraction implies that the internal details of an object are hidden from other objects. This

property is crucial to deal with heterogeneity, permitting different services to be implemented in

4



different ways, using different mechanisms and technologies, thus enabling portability and

interoperability. Object abstraction is also essential to support system's evolution. It builds a

strong separation between objects, enabling them to be replaced or modified without changing

their environment, as long as they continue to support the services the environment expects.

The behavior of an object is the set of all potential actions in which that object may take part.

The state characterizes the situation of an object at a given instant.

An interface is the only means to access an object. An ODP object may have many interfaces,

for functional separation and distribution purposes. Each interface is an abstraction of the

object's behavior that consists of a subset of the interactions of that object together with a set of

constraints on when they may occur
3

.

Templates are used to describe objects. Objects with the same behavior may be described by

the same template.

A type is a predicate, (i.e., a property of a collection of objects. Objects do not have to be

similar to satisfy the same type, they only need to have the properties prescribed by the type. A
class is the collection of objects associated with a type. Type A is a subtype of a type B, and B is

a supertype of A, if every object which satisfies A also satisfies B. Class A is a subclass of

another class B, and B is a superclass of A, when the type associated with A is a subtype of the

type associated with B 3
.

2.5 ODP Architecture

The prescriptive model2 makes statements which must hold for a system to be considered as

an ODP system. It presents the ODP Architecture, which consists of a set of rules to define the

structure of an ODP system and the interrelationships between its parts.

The Reference Model defines a framework comprising:

• Viewpoints.

• A viewpoint language for each viewpoint.

• Specifications of the functions required to support ODP systems.

• Transparency prescriptions showing how to use the ODP functions to achieve

distribution transparency.

The architecture for ODP systems and the composition of functions is determined by the

combination of the computational language, the engineering language and the transparency

prescriptions.

5



2.5.1 Computational language

The computational language provides the concepts that can be used to structure distributed

applications. In the computational viewpoint, an ODP system is specified as a set of interacting

objects providing application specific functions. The details ofthe infrastructure which supports

these interactions are not visible in the computational viewpoint. They are described in the

engineering viewpoint.

Each interaction of a computational object occurs at one of its interfaces. The Reference

Model specifies signature type rules for computational interfaces. Signature subtyping rules

define minimum requirements for one interface to substitute another.

For two objects to co-operate, they must be bound to each other. The ODP computational

language supports both implicit and explicit binding. In implicit binding the objects are bound

directly (see figure 1).

One object obtains an identifier to an interface of another by some means, either from a trader

or as a result of some other interaction. At some unspecified time between receipt ofthe interface

identifier and the first invocation of an operation in the interface, a binding process occurs.

Explicit binding is performed as an action. A binding object is created, which encapsulates

the binding mechanisms, allowing the binding to be manipulated (see figure 2).

Control interface

6



The control interfaces of a binding object provide functions such as: monitoring the binding,

authorizing changes to the binding, changing the quality of service of the binding, deleting the

binding.

2.5.2 Engineering language

The engineering language provides concepts for describing the infrastructure required to

support distributed interaction between objects in an ODP system. It contains rules for:

• Structuring communication channels between objects (stubs, binders, protocol objects,

interceptors).

• Structuring systems for the purpose of resource management (node, nucleus, cluster,

capsule).

The Basic Engineering Objects (BEO) correspond to Basic Computational Objects (BCO)

(see figure 3)
1

. BEOs are grouped into clusters that represent, for instance, a piece of C code.

Clusters are organized into a capsule that can be compared with a UNIX process. The capsule is

bound to a nucleus which represents, for instance, a particular operating system. A nucleus

belongs to a node
,
representing for instance a workstation.

The refinement of computational templates into engineering templates can be compared to

compiling programs to produce object code. The refinement of engineering templates into

cluster templates corresponds to Unking modules.

7



Control interface

Computational

Engineering

A channel supports distribution transparent interaction between BEOs. It is a configuration

of stubs, binders, protocol objects and interceptors, interconnecting a set ofBEOs. A
computational binding corresponds to a channel configuration in the engineering specification.

Stubs, binders, protocol objects and interceptors are all engineering objects.

BEOs which interact via channels (BEOs in the same cluster do not require channels to

interact) are locally bound to stubs. A stub provides the conversion of data carried by

interactions. It can apply controls and keep records (e.g., for security and accounting) and it can

also have a control interface for quality of service management.

Binders interact with one another to maintain the integrity of the binding. They provide

8



relocation transparency by monitoring communication failures and repairing broken distributed

bindings. A binder may have a control interface, which enables changes in the configuration of

the channel and deletion of the channel.

Protocol objects provide communication functions, assuring that computational objects can

interact remotely with each other. When protocol objects in a channel are of different type, they

require an interceptor which provides protocol conversion. All protocol objects in a

communication domain can communicate directly. An interceptor stands at the boundary

between domains and provides checks and transformations on interactions that cross domain

boundaries.

2.6 Management Functions

Resource management requires that it be possible to invoke management operations on

individual services, the objects that contain them, the cluster that contains the object, the capsule

that contains the cluster and the node that supports the capsule.

A cluster is a set ofBEOs associated with a cluster manager. Each BEO in a cluster can be

bound to other BEOs in the same cluster, or in other clusters. Additionally, a BEO can have an

interface supporting the object management function. This object interface is bound to the cluster

manager. A BEO is also bound to the nucleus at an interface providing the node management

function.

Each cluster manager in a capsule is bound to the capsule manager for that capsule. This

structure is presented on figure 42
.

The cluster management function can checkpoint, recover, migrate, deactivate and delete the

cluster. It may require the cluster manager to interact with the objects in the cluster via their

object management interface. Cluster instantiation is performed by a capsule manager.

A capsule consists of: cluster(s), cluster managers (one for each cluster) and a capsule

manager. The capsule management function instantiates clusters from a cluster template and can

checkpoint, deactivate and delete a capsule. Capsule instantiation is performed by the nucleus.

9



Object Managent

Interface

Channel

A node consists of one nucleus and a set of capsules. The nucleus provides a set of node

management interfaces, one to each capsule within the node. The node management function

provides thread management for objects which can provide spawning, forking and joining of

activities defined in the computational language.

2.7 Management of ODP Systems

An ODP system consists of a number ofODP applications which make use of underlying

support services. All these services, as well as the ODP applications, need to be managed.

Management in ODP is concerned with overall systems management, including application

management and communication management.

A managed object is an entity to which a management policy applies and which behavior can

be monitored and changed by a manager. It is an abstraction that represents the properties of data

processing and data communications resources, for the purposes of management. A managed

object could be a hardware or software component, or a collection of information (e.g. a data

structure).

10



Managers monitor the activities of managed objects, make management decisions based on

that information and perform control actions on the managed objects, modifying the system's

behavior.

In an ODP system, only an object can modify its own behavior. In order to realize ODP
management applications, it is necessary to specify management interfaces supporting the

management operations that can be performed on a managed object. Thus, a managed object,

besides its normal functional interfaces, can provide more than one management interface

reflecting different management views.

There are three types of interactions between managers and managed objects:

• Control actions: are directed by the manager to the managed object.

• Requests for information: are issued by the manager and result in a reply from the

managed object sending the required information.

• Notifications: are sent to the manager by the managed object to report faults or events.

Within the ODP environment there are multiple coexisting management views and boundaries

of responsibility. To reflect these different views, domains provide a means of specifying

boundaries of management responsibility and authority. All the managed objects in a domain are

controlled under a common management policy. An important aspect of a management policy is

to specify what management operations managers may perform on the objects they manage.

Management policy and domain membership can be modified through interactions with a single

object, called the domain coordinator managed object. This way managers do not need to interact

individually with the multiple managed objects within the environment.

Domains do not encapsulate the member objects, external objects may interact directly with

an object in a domain.

Domain relationships can be used to model management structures. It is necessary to permit

different domains, with members in common, to coexist in order to reflect the different required

views of management. Two domains are disjoint if they have no member objects in common.

Two domains overlap if there are objects which are members of both domains. The necessary

transformations in order to allow activities to cross from one domain to another take place at the

federation boundaries.

11



3 POSIX Open System Environment (OSE) Overview

An Open System Environment (OSE) is a computing environment which encompasses the

functionality needed to provide interoperability, portability and scalability of computerized

applications distributed across networks of heterogeneous, multivendor

hardware/software/communications platforms
4

.

Interoperability, portability and scalability are the three major concepts of open systems:

• Interoperability: the capacity of systems to exchange information and to mutually use the

information that has been exchanged.

• Portability: the ability of application software source code and data to be transported

without significant modification to more than one type of platform or operating system.

• Scalability: the ability to move, without significant modification, application software

code and data into systems and environments with a variety of performance

characteristics and capabilities, ranging from standalone microcomputers to large

heterogeneous distributed systems.

3.1 OSE Reference Model

The Institute of Electrical and Electronics Engineers (IEEE) POSIX Working Group PI 003.0

describes an OSE Reference Model (OSE/RM), which provides a framework for describing open

system concepts and defining a terminology that can be agreed upon by all interested parties.

The OSE/RM spans the gap between system requirements specification and design of a specific

system that uses information technology (IT)
5

,
allowing future information system users (who

state requirements) and providers (who provide the system to fulfill those requirements)

understand each other.

The OSE/RM provides a basis for specification of standards to enable application portability

and interoperability. It describes an OSE identifying system entities and key interfaces between

them that are related to application software portability and interoperability (see figure 5).

The five classes of entities identified by the OSE/RM are:

• Application Software Entities: software specific to an application. It is composed of one

or more of: programs, data, documentation and training.

• Application Platform Entity: comprises the collection of hardware and software

components that provide the system services used by the application software. It provides

services at its interfaces.

12



User: users are not further classified, they are treated as typical persons.

Information Interchange Entities: physical data storage media, including, for example,

CD-ROM, magnetic tapes, floppy disks and security badges.

Communication Entities: include external data transport facilities and devices, such as

phone lines, local area networks and packet switching equipment.

Figure 5 POSIX OSE Reference Model

There are four classes of interfaces in the OSE/RM:

• Application Program Interface (API): the interface between the application software and

the application platform. Its primary function is to support portability of application

software. There are four types of services accessible via the API:

13



• Internal system services

• Human/Computer interaction services

• Information interchange services

• Communication services

Internal system services provide access to services associated with resources that are

internal to the application platform. The other three types of services listed provide the

application software with access to services associated with external environment

entities.

® Human/Computer Interface (HCI): the boundary across which physical interaction

between the human user and the application platform takes place.

• Information Services Interface (ISI): the boundary across which external, persistent

storage is provided.

• Communication Services Interface (CSI): provides access to services for interaction

between internal application software entities and application platform external entities,

such as application software entities on other application platforms, external data

transport facilities and devices. This interface supports system and application software

interoperability.

The API, HCI, ISI and CSI define the services provided by the application platform to its

users. The definition of these interfaces must be driven by the user requirements and be as

independent of the implementation technology as possible. The elimination of platform specific

aspects of application software is essential to achieving portability across a wide range of

implementations
6

.

3.2 OSE Services

The OSE reference model defines services provided to users of application platforms in

support ofPOSIX objectives of application portability and system interoperability. These

services are available to users across the interfaces specified in section 3.1.

The OSE services are divided into four major categories, which are partitioned into a more

detailed set of subcategories:

• System Services

• Language Services

• Core System Services

• Communications Services

14



• Information Services:

• Database Services

• Data Interchange Services

• Transaction Processing Services

• Human/Computer Interaction Services:

• User Command Interface Services

• Character-Based User Interface Services

• Windowing System Services

• Graphics Services

• Application Software Development Support Services

3.3 OSE Cross-category Services

The services listed in the previous section are provided by the entities identified in the

OSE/RM at their interfaces, allowing access to their associated facilities and services. There is,

however, another class of services that may influence the OSE system basic entities. These

services are referred to as POSIX OSE cross-category services.

A cross-category service, when applied, may have a direct effect on the operation of one or

more of the open system components, but it is not in and of itself a stand-alone OSE component.

Examples ofPOSIX OSE cross-category services include internationalization, security, and

administration.

3.3.1 OSE Internationalization Services

The task of internationalization is to ensure that the services provided by the POSIX OSE,

and the interfaces between such services, are specified in such a way that they can be easily used

all over the world, supporting multiple natural languages and the underlying cultural

conventions.

3.3.2 OSE Security Services

Security services are provided to support the secure distribution and integrity of information,

and to protect the computing infrastructure from unauthorized access.

The four basic security objectives of a system are to maintain:

15



• Confidentiality

• Integrity

• Availability

• Accountability

3.3.3 OSE System Management Services

Information systems are composed of a wide variety of resources that must be managed

effectively to be successfully used. Although resources may differ widely, the basic management

concepts may be applied in a uniform manner. The adoption of a common management model

enables administrators to manage different resources without the need to learn different

techniques for each resource.

The goal of system and network management standards is to enable the provision of portable

and interoperable management technology
5

. The existence of standard user-level interfaces to

management functionality also provides portability of system and network administrators.

Systems management functionality may be divided into functional groups, according to the

resources being managed (e.g. printer management, software management, user management,

network management, processor management) or into categories, identifying components

common to all functional groups:

• Configuration Management
• Performance Management
• Fault Management
• Accounting Management
• Security Management

The reference model for systems management (see figure 6)
5
is consistent with the POSIX

OSE model shown in figure 5.

16



Figure 6 POSIX OSE Reference Model for Systems Management.

Management applications provide software application entities to support management tasks

in specific areas of management functionality. They make use of services provided by the

application platform.

In addition to the normal functionality platform services, there are management components

within the platform representing management system services. Managed objects are included in

the application platform. They are abstract representations of resources that are to be managed.

This abstraction allows different resources to be managed in a uniform manner.

The external environment, as described for the systems management reference model,

includes administrators who use management applications via a command line interface or a

graphical interface facilitating administrator portability, and mechanisms for exchanging

information outside the model (e.g. via external networks and transportable media).

POSIX OSE standards for some of the management services — print, software distribution

and user group management — already exist. Other standards and emerging standards developed

by other organizations will be included in POSIX OSE.

17



4 ODP-OSE Relationships

The ODP OSE reference models address complementary problems. The RM-ODP focuses on

enabling distributed systems and the OSE/RM on enabling application portability.

OSE specifications are limited to application platform boundaries, as shown in figure 7.

Figure 7 POSIX OSE-based Distributed System

The OSE/RM identifies system entities and interfaces between those entities that are related

to application software portability and interoperability. It categorizes and describes services

available to application platform users at those interfaces. Therefore, these interfaces

characterize the application platform from the application software and external perspective. No
further implementation aspects are represented. The application platform is treated as a black

box. In a distributed system, the application platform may be implemented as either distributed

or non-distributed and the OSE/RM does not distinguish between the two cases.

The elimination of platform specific aspects of application software is essential to achieve the

main objective ofOSE — application portability across a wide range of platform

implementations.

18



A programmer wishing to write portable application software in an OSE will use standardized

programming languages and language bindings to the required services. A consistent interface

to the operating system is also essential for applications portability. Thus, applications are

wrapped in standard interfaces that connect them to the computing environment. They produce

and accept standard data formats, and communicate using standardized protocols. The use of

standard communication protocols, data interchange formats, and distributed interfaces allows

applications to interoperate.

Source code portability is also addressed by the ODP reference model in the computational

viewpoint. Standards for portability in ODP systems specify action templates for the actions in

which a computational object can participate (i.e. initiate operation invocations, respond to

operation invocations, instantiate interface templates, bind interfaces, access and modify its

state). The specification of such templates is a matter of language design. A portability standard

may represent the permitted actions directly (e.g., as library functions) or indirectly through

syntactic structures. ODP specifications, however, take a different view of the application

platform.

A new approach to distributed systems is emerging. Application platforms are being broken

into parts and distributed across heterogeneous environments. Additionally, what has

traditionally been regarded as a single application is also being decomposed into parts, and those

parts distributed across a heterogeneous distributed environment at runtime. The ODP reference

model addresses and enables this distribution of application software and application platform

components across distributed systems. In order to achieve these objectives it is necessary to

address interfaces internal both to application platform and to external communications entities
6

.

The visibility of internal interfaces is the main difference between the ODP and OSE approach.

Providing an architecture which allows decomposition of both application software and

application platform into parts that may be distributed over a heterogeneous environment,

implies considering issues such as:

• What modifications to existing platform services are required to support the distribution

of application software components?

• What additional services are needed?

• How can application platform services be distributed?

• What is the application software implication on the distribution of specific services and

interfaces?

These issues are important to both ODP and OSE. Although OSE does not address

application platform internal services and interfaces, the provision of those services that support

application portability and interoperability are necessary at application platform boundaries.

Similar to the OSE specifications limitation to application platform boundaries, the ODP
computational viewpoint is concerned only with the functional decomposition of the system into

objects which interact at interfaces without considering distribution. Only the engineering

19



language prescribes the internal structure of the application platform. For both OSE
specifications and the ODP computational viewpoint, the application platform view is at its

external interfaces. Neither Model considers the internal interfaces. Therefore, the abstraction

represented by the OSE reference model appears to correspond to the computational viewpoint

of the ODP reference model. A correspondence may be established between components of the

two models. Some examples are shown in the following table.

OSE ODP

Application Program Interface Computational Interface

Application Software Entities Basic Computational Objects

Application Platform Infrastructure described by the

Engineering Language

Table 1. Component Correspondence

4.1 Distributed Systems Management

Distributed systems management can be regarded as a particular case of a distributed

application. POSIX OSE presents a reference model for systems management (see figure 6)

consistent with the OSE/RM. Application entities are in this case management applications that

make use of services provided by the application platform. These services are both normal

functionality services and additional management services.

The application platform includes managed objects to represent resources to be managed, but

the OSE/RM makes no reference to how those managed objects are organized and how
management services are provided at the application platform boundaries.

The ODP reference model describes distributed system management concepts, such as

managed objects representing both application software components and application platform

resources, and management interfaces to support management operations that can be performed

on managed objects.

Management support is addressed both in the computational and engineering viewpoints. For

example, a binding object in a computational binding may have a control interface that provides

the means to express monitoring, and configuration and quality of service control. Management

of a computational binding would correspond in the engineering viewpoint to channel

management, via control interfaces of stubs, binders, protocol objects and interceptors (see

section 2.7).

20



ODP specifications do not include a management model. They only describe basic

management concepts and how the ODP reference model may support different management

functional areas. However, a reference is made to some examples for system management 1

,

namely an example based on the OSI Management Framework and a Distributed Object

Manager (DOM) which allows users to identify and access available services in a dynamically

configurable distributed environment.

21



5 References

1 . ISO/IEC 1 0746-1 . Open Distributed Processing - Reference Model - Part 1 : Overview.

ISO/IEC 10746-1, ITU-T X.901 (committee draft), July 1994.

2. ISO- 10746-3. Open Distributed Processing - Reference Model - Part 3: Architecture.

ISO/IEC 10746-3, ITU-T X.903 (committee draft), 1995.

3. ISO- 10746-2. Open Distributed Processing - Reference Model - Part 2: Foundations.

International Standard 10746-2, ITU-T X.902, 1994.

4. Application Portability Profiles (APP) - The U.S. Government's Open System

Environment Profile Version 3.0. Draft, Computer Systems Laboratory, NIST, 1995.

5. ISO/IEC TR 14252 and IEEE 1003.0. Guide to the POSIX Open System Environment,

1995.

6. Programme ofResearch on Open Systems Testing - Report ofthe Study on Testingfor

Open Distributed Processing
,
Chapter on Conformance Testing, ODP and OSE. U.K.

Department of Trade and Industry (DTI) with Architecture Projects Management Ltd.,

NIST, National Physical Laboratory, Object Management Group, and University ofKent

at Canterbury, 1993.

22






